from re import match
from os.path import join
from tempfile import gettempdir

from pygame import Surface
from pygame.font import Font
from pygame.draw import aaline
from pygame.locals import *

from GameChild import GameChild
from Sprite import Sprite
from Animation import Animation

class Interpolator(list, GameChild):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.set_nodesets()
        self.gui_enabled = self.check_command_line("-interpolator")
        if self.gui_enabled:
            self.gui = GUI(self)

    def set_nodesets(self):
        config = self.get_configuration()
        if config.has_section("interpolate"):
            for name, value in config.get_section("interpolate").iteritems():
                self.add_nodeset(name, value)

    def add_nodeset(self, name, value, method=None):
        self.append(Nodeset(name, value, method))
        return len(self) - 1

    def is_gui_active(self):
        return self.gui_enabled and self.gui.active

    def get_nodeset(self, name):
        for nodeset in self:
            if nodeset.name == name:
                return nodeset

    def remove(self, outgoing):
        for ii, nodeset in enumerate(self):
            if nodeset.name == outgoing.name:
                self.pop(ii)
                break


class Nodeset(list):

    LINEAR, CUBIC = range(2)

    def __init__(self, name, nodes, method=None):
        list.__init__(self, [])
        self.name = name
        if isinstance(nodes, str):
            self.parse_raw(nodes)
        else:
            self.interpolation_method = method
            self.parse_list(nodes)
        self.set_splines()

    def parse_raw(self, raw):
        raw = raw.strip()
        if raw[0].upper() == "L":
            self.set_interpolation_method(self.LINEAR, False)
        else:
            self.set_interpolation_method(self.CUBIC, False)
        for node in raw[1:].strip().split(","):
            self.add_node(map(float, node.strip().split()), False)

    def set_interpolation_method(self, method, refresh=True):
        self.interpolation_method = method
        if refresh:
            self.set_splines()

    def add_node(self, coordinates, refresh=True):
        x = coordinates[0]
        inserted = False
        index = 0
        for ii, node in enumerate(self):
            if x < node.x:
                self.insert(ii, Node(coordinates))
                inserted = True
                index = ii
                break
            elif x == node.x:
                return None
        if not inserted:
            self.append(Node(coordinates))
            index = len(self) - 1
        if refresh:
            self.set_splines()
        return index

    def parse_list(self, nodes):
        for node in nodes:
            self.add_node(node)

    def set_splines(self):
        if self.interpolation_method == self.LINEAR:
            self.set_linear_splines()
        else:
            self.set_cubic_splines()

    def set_linear_splines(self):
        self.splines = splines = []
        for ii in xrange(len(self) - 1):
            x1, y1, x2, y2 = self[ii] + self[ii + 1]
            m = float(y2 - y1) / (x2 - x1)
            splines.append(LinearSpline(x1, y1, m))

    def set_cubic_splines(self):
        n = len(self) - 1
        a = [node.y for node in self]
        b = [None] * n
        d = [None] * n
        h = [self[ii + 1].x - self[ii].x for ii in xrange(n)]
        alpha = [None] + [(3.0 / h[ii]) * (a[ii + 1] - a[ii]) - \
                          (3.0 / h[ii - 1]) * (a[ii] - a[ii - 1]) \
                          for ii in xrange(1, n)]
        c = [None] * (n + 1)
        l = [None] * (n + 1)
        u = [None] * (n + 1)
        z = [None] * (n + 1)
        l[0] = 1
        u[0] = z[0] = 0
        for ii in xrange(1, n):
            l[ii] = 2 * (self[ii + 1].x - self[ii - 1].x) - \
                    h[ii - 1] * u[ii - 1]
            u[ii] = h[ii] / l[ii]
            z[ii] = (alpha[ii] - h[ii - 1] * z[ii - 1]) / l[ii]
        l[n] = 1
        z[n] = c[n] = 0
        for jj in xrange(n - 1, -1, -1):
            c[jj] = z[jj] - u[jj] * c[jj + 1]
            b[jj] = (a[jj + 1] - a[jj]) / h[jj] - \
                    (h[jj] * (c[jj + 1] + 2 * c[jj])) / 3
            d[jj] = (c[jj + 1] - c[jj]) / (3 * h[jj])
        self.splines = [CubicSpline(self[ii].x, a[ii], b[ii], c[ii],
                                    d[ii]) for ii in xrange(n)]

    def get_y(self, t, loop=False, reverse=False, natural=False):
        if loop or reverse:
            if reverse and int(t) / int(self[-1].x) % 2:
                t = self[-1].x - t
            t %= self[-1].x
        elif not natural:
            if t < self[0].x:
                t = self[0].x
            elif t > self[-1].x:
                t = self[-1].x
        splines = self.splines
        for ii in xrange(len(splines) - 1):
            if t < splines[ii + 1].x:
                return splines[ii].get_y(t)
        return splines[-1].get_y(t)

    def remove(self, node, refresh=True):
        list.remove(self, node)
        if refresh:
            self.set_splines()

    def resize(self, left, length, refresh=True):
        old_left = self[0].x
        old_length = self.get_length()
        for node in self:
            node.x = left + length * (node.x - old_left) / old_length
        if refresh:
            self.set_splines()

    def get_length(self):
        return self[-1].x - self[0].x


class Node(list):

    def __init__(self, coordinates):
        list.__init__(self, coordinates)

    def __getattr__(self, name):
        if name == "x":
            return self[0]
        elif name == "y":
            return self[1]
        return list.__get__(self, name)

    def __setattr__(self, name, value):
        if name == "x":
            list.__setitem__(self, 0, value)
        elif name == "y":
            list.__setitem__(self, 1, value)
        else:
            list.__setattr__(self, name, value)


class Spline:

    def __init__(self, x):
        self.x = x


class CubicSpline(Spline):

    def __init__(self, x, a, b, c, d):
        Spline.__init__(self, x)
        self.a = a
        self.b = b
        self.c = c
        self.d = d

    def get_y(self, t):
        x = self.x
        return self.a + self.b * (t - x) + self.c * (t - x) ** 2 + self.d * \
               (t - x) ** 3


class LinearSpline(Spline):

    def __init__(self, x, y, m):
        Spline.__init__(self, x)
        self.y = y
        self.m = m

    def get_y(self, t):
        return self.m * (t - self.x) + self.y


class GUI(Animation):

    B_DUPLICATE, B_WRITE, B_DELETE, B_LINEAR, B_CUBIC, B_SPLIT = range(6)
    S_NONE, S_LEFT, S_RIGHT = range(3)

    def __init__(self, parent):
        Animation.__init__(self, parent, unfiltered=True)
        self.audio = self.get_audio()
        self.display = self.get_game().display
        self.display_surface = self.get_display_surface()
        self.time_filter = self.get_game().time_filter
        self.delegate = self.get_delegate()
        self.split = self.S_NONE
        self.success_indicator_active = True
        self.success_indicator_blink_count = 0
        self.load_configuration()
        self.font = Font(None, self.label_size)
        self.prompt = Prompt(self)
        self.set_temporary_file()
        self.set_background()
        self.set_success_indicator()
        self.set_plot_rect()
        self.set_marker_frame()
        self.set_buttons()
        self.active = False
        self.set_nodeset_index()
        self.set_y_range()
        self.set_markers()
        self.subscribe(self.respond_to_command)
        self.subscribe(self.respond_to_mouse_down, MOUSEBUTTONDOWN)
        self.subscribe(self.respond_to_key, KEYDOWN)
        self.register(self.show_success_indicator, interval=100)
        self.register(self.save_temporary_file, interval=10000)
        self.play(self.save_temporary_file)

    def load_configuration(self):
        config = self.get_configuration("interpolator-gui")
        self.label_size = config["label-size"]
        self.axis_label_count = config["axis-label-count"]
        self.margin = config["margin"]
        self.curve_color = config["curve-color"]
        self.marker_size = config["marker-size"]
        self.marker_color = config["marker-color"]
        self.label_precision = config["label-precision"]
        self.template_nodeset = config["template-nodeset"]
        self.template_nodeset_name = config["template-nodeset-name"]
        self.flat_y_range = config["flat-y-range"]

    def set_temporary_file(self):
        self.temporary_file = open(join(gettempdir(), "pgfw-config"), "w")

    def set_background(self):
        surface = Surface(self.display_surface.get_size())
        surface.fill((0, 0, 0))
        self.background = surface

    def set_success_indicator(self):
        surface = Surface((10, 10))
        surface.fill((0, 255, 0))
        rect = surface.get_rect()
        rect.topleft = self.display_surface.get_rect().topleft
        self.success_indicator, self.success_indicator_rect = surface, rect

    def set_plot_rect(self):
        margin = self.margin
        self.plot_rect = self.display_surface.get_rect().inflate(-margin,
                                                                 -margin)

    def set_marker_frame(self):
        size = self.marker_size
        surface = Surface((size, size))
        transparent_color = (255, 0, 255)
        surface.fill(transparent_color)
        surface.set_colorkey(transparent_color)
        line_color = self.marker_color
        aaline(surface, line_color, (0, 0), (size - 1, size - 1))
        aaline(surface, line_color, (0, size - 1), (size - 1, 0))
        self.marker_frame = surface

    def set_buttons(self):
        self.buttons = buttons = []
        text = "Duplicate", "Write", "Delete", "Linear", "Cubic", "Split: No"
        x = 0
        for instruction in text:
            buttons.append(Button(self, instruction, x))
            x += buttons[-1].location.w + 10

    def set_nodeset_index(self, increment=None, index=None):
        parent = self.parent
        if index is None:
            if not increment:
                index = 0
            else:
                index = self.nodeset_index + increment
                limit = len(parent) - 1
                if index > limit:
                    index = 0
                elif index < 0:
                    index = limit
        self.nodeset_index = index
        self.set_nodeset_label()

    def set_nodeset_label(self):
        surface = self.font.render(self.get_nodeset().name, True, (0, 0, 0),
                                   (255, 255, 255))
        rect = surface.get_rect()
        rect.bottomright = self.display_surface.get_rect().bottomright
        self.nodeset_label, self.nodeset_label_rect = surface, rect

    def get_nodeset(self):
        if not len(self.parent):
            self.parent.add_nodeset(self.template_nodeset_name,
                                    self.template_nodeset)
            self.set_nodeset_index(0)
        return self.parent[self.nodeset_index]

    def set_y_range(self):
        width = self.plot_rect.w
        nodeset = self.get_nodeset()
        self.y_range = y_range = [nodeset[0].y, nodeset[-1].y]
        x = 0
        while x < width:
            y = nodeset.get_y(self.get_function_coordinates(x)[0])
            if y < y_range[0]:
                y_range[0] = y
            elif y > y_range[1]:
                y_range[1] = y
            x += width * .01
        if y_range[1] - y_range[0] == 0:
            y_range[1] += self.flat_y_range
        if self.split:
            self.adjust_for_split(y_range, nodeset)
        self.set_axis_labels()

    def get_function_coordinates(self, xp=0, yp=0):
        nodeset = self.get_nodeset()
        x_min, x_max, (y_min, y_max) = nodeset[0].x, nodeset[-1].x, self.y_range
        rect = self.plot_rect
        x = float(xp) / (rect.right - rect.left) * (x_max - x_min) + x_min
        y = float(yp) / (rect.bottom - rect.top) * (y_min - y_max) + y_max
        return x, y

    def adjust_for_split(self, y_range, nodeset):
        middle = nodeset[0].y if self.split == self.S_LEFT else nodeset[-1].y
        below, above = middle - y_range[0], y_range[1] - middle
        if below > above:
            y_range[1] += below - above
        else:
            y_range[0] -= above - below

    def set_axis_labels(self):
        self.axis_labels = labels = []
        nodeset, formatted, render, rect, yr = (self.get_nodeset(),
                                                self.get_formatted_measure,
                                                self.font.render,
                                                self.plot_rect, self.y_range)
        for ii, node in enumerate(nodeset[0::len(nodeset) - 1]):
            xs = render(formatted(node.x), True, (0, 0, 0), (255, 255, 255))
            xsr = xs.get_rect()
            xsr.top = rect.bottom
            if not ii:
                xsr.left = rect.left
            else:
                xsr.right = rect.right
            ys = render(formatted(yr[ii]), True, (0, 0, 0), (255, 255, 255))
            ysr = ys.get_rect()
            ysr.right = rect.left
            if not ii:
                ysr.bottom = rect.bottom
            else:
                ysr.top = rect.top
            labels.append(((xs, xsr), (ys, ysr)))

    def get_formatted_measure(self, measure):
        return "%s" % float(("%." + str(self.label_precision) + "g") % measure)

    def deactivate(self):
        self.active = False
        self.time_filter.open()
        self.audio.muted = self.saved_mute_state
        self.display.set_mouse_visibility(self.saved_mouse_state)

    def respond_to_command(self, event):
        compare = self.delegate.compare
        if compare(event, "toggle-interpolator"):
            self.toggle()
        elif self.active:
            if compare(event, "reset-game"):
                self.deactivate()
            elif compare(event, "quit"):
                self.get_game().end(event)

    def toggle(self):
        if self.active:
            self.deactivate()
            self.get_game().delegate.post("refresh-nodesets")
        else:
            self.activate()

    def activate(self):
        self.active = True
        self.time_filter.close()
        self.saved_mute_state = self.audio.muted
        self.audio.mute()
        self.draw()
        self.saved_mouse_state = self.display.set_mouse_visibility(True)

    def respond_to_mouse_down(self, event):
        redraw = False
        if self.active and not self.prompt.active:
            nodeset_rect = self.nodeset_label_rect
            plot_rect = self.plot_rect
            if event.button == 1:
                pos = event.pos
                if nodeset_rect.collidepoint(pos):
                    self.set_nodeset_index(1)
                    redraw = True
                elif self.axis_labels[0][0][1].collidepoint(pos):
                    text = "{0} {1}".format(*map(self.get_formatted_measure,
                                                 self.get_nodeset()[0]))
                    self.prompt.activate(text, self.resize_nodeset, 0)
                elif self.axis_labels[1][0][1].collidepoint(pos):
                    text = "{0} {1}".format(*map(self.get_formatted_measure,
                                                 self.get_nodeset()[-1]))
                    self.prompt.activate(text, self.resize_nodeset, -1)
                else:
                    bi = self.collide_buttons(pos)
                    if bi is not None:
                        if bi == self.B_WRITE:
                            self.get_configuration().write()
                            self.play(self.show_success_indicator)
                        elif bi in (self.B_LINEAR, self.B_CUBIC):
                            nodeset = self.get_nodeset()
                            if bi == self.B_LINEAR:
                                nodeset.set_interpolation_method(Nodeset.LINEAR)
                            else:
                                nodeset.set_interpolation_method(Nodeset.CUBIC)
                            self.store_in_configuration()
                            redraw = True
                        elif bi == self.B_DUPLICATE:
                            self.prompt.activate("", self.add_nodeset)
                        elif bi == self.B_DELETE and len(self.parent) > 1:
                            self.parent.remove(self.get_nodeset())
                            self.set_nodeset_index(1)
                            self.store_in_configuration()
                            redraw = True
                        elif bi == self.B_SPLIT:
                            self.toggle_split()
                            redraw = True
                    elif plot_rect.collidepoint(pos) and \
                             not self.collide_markers(pos):
                        xp, yp = pos[0] - plot_rect.left, pos[1] - plot_rect.top
                        self.get_nodeset().add_node(
                            self.get_function_coordinates(xp, yp))
                        self.store_in_configuration()
                        redraw = True
            elif event.button == 3:
                pos = event.pos
                if nodeset_rect.collidepoint(pos):
                    self.set_nodeset_index(-1)
                    redraw = True
                elif plot_rect.collidepoint(pos):
                    marker = self.collide_markers(pos)
                    if marker:
                        self.get_nodeset().remove(marker.node)
                        self.store_in_configuration()
                        redraw = True
        elif self.active and self.prompt.active and \
                 not self.prompt.rect.collidepoint(event.pos):
            self.prompt.deactivate()
            redraw = True
        if redraw:
            self.set_y_range()
            self.set_markers()
            self.draw()

    def resize_nodeset(self, text, index):
        result = match("^\s*(-{,1}\d*\.{,1}\d*)\s+(-{,1}\d*\.{,1}\d*)\s*$",
                       text)
        if result:
            try:
                nodeset = self.get_nodeset()
                x, y = map(float, result.group(1, 2))
                if (index == -1 and x > nodeset[0].x) or \
                       (index == 0 and x < nodeset[-1].x):
                    nodeset[index].y = y
                    if index == -1:
                        nodeset.resize(nodeset[0].x, x - nodeset[0].x)
                    else:
                        nodeset.resize(x, nodeset[-1].x - x)
                    self.store_in_configuration()
                    self.set_y_range()
                    self.set_axis_labels()
                    self.set_markers()
                    self.draw()
                    return True
            except ValueError:
                return False

    def collide_buttons(self, pos):
        for ii, button in enumerate(self.buttons):
            if button.location.collidepoint(pos):
                return ii

    def store_in_configuration(self):
        config = self.get_configuration()
        section = "interpolate"
        config.clear_section(section)
        for nodeset in self.parent:
            code = "L" if nodeset.interpolation_method == Nodeset.LINEAR else \
                   "C"
            for ii, node in enumerate(nodeset):
                if ii > 0:
                    code += ","
                code += " {0} {1}".format(*map(self.get_formatted_measure,
                                               node))
            if not config.has_section(section):
                config.add_section(section)
            config.set(section, nodeset.name, code)

    def toggle_split(self):
        self.split += 1
        if self.split > self.S_RIGHT:
            self.split = self.S_NONE
        self.buttons[self.B_SPLIT].set_frame(["Split: No", "Split: L",
                                              "Split: R"][self.split])

    def add_nodeset(self, name):
        nodeset = self.get_nodeset()
        self.set_nodeset_index(index=self.parent.add_nodeset(\
            name, nodeset, nodeset.interpolation_method))
        self.store_in_configuration()
        self.draw()
        return True

    def collide_markers(self, pos):
        for marker in self.markers:
            if marker.location.collidepoint(pos):
                return marker

    def set_markers(self):
        self.markers = markers = []
        for node in self.get_nodeset()[1:-1]:
            markers.append(Marker(self, node))
            markers[-1].location.center = self.get_plot_coordinates(*node)

    def get_plot_coordinates(self, x=0, y=0):
        nodeset = self.get_nodeset()
        x_min, x_max, (y_min, y_max) = nodeset[0].x, nodeset[-1].x, self.y_range
        x_ratio = float(x - x_min) / (x_max - x_min)
        rect = self.plot_rect
        xp = x_ratio * (rect.right - rect.left) + rect.left
        y_ratio = float(y - y_min) / (y_max - y_min)
        yp = rect.bottom - y_ratio * (rect.bottom - rect.top)
        return xp, yp

    def draw(self):
        display_surface = self.display_surface
        display_surface.blit(self.background, (0, 0))
        display_surface.blit(self.nodeset_label, self.nodeset_label_rect)
        self.draw_axes()
        self.draw_function()
        self.draw_markers()
        self.draw_buttons()

    def draw_axes(self):
        display_surface = self.display_surface
        for xl, yl in self.axis_labels:
            display_surface.blit(*xl)
            display_surface.blit(*yl)

    def draw_function(self):
        rect = self.plot_rect
        surface = self.display_surface
        nodeset = self.get_nodeset()
        step = 1
        for x in xrange(rect.left, rect.right + step, step):
            ii = x - rect.left
            fx = nodeset.get_y(self.get_function_coordinates(ii)[0])
            y = self.get_plot_coordinates(y=fx)[1]
            if ii > 0:
                aaline(surface, self.curve_color, (x - step, last_y), (x, y))
            last_y = y

    def draw_markers(self):
        for marker in self.markers:
            marker.update()

    def draw_buttons(self):
        for button in self.buttons:
            button.update()

    def respond_to_key(self, event):
        if self.prompt.active:
            prompt = self.prompt
            if event.key == K_RETURN:
                if prompt.callback[0](prompt.text, *prompt.callback[1]):
                    prompt.deactivate()
            elif event.key == K_BACKSPACE:
                prompt.text = prompt.text[:-1]
                prompt.update()
                prompt.draw_text()
            elif (event.unicode.isalnum() or event.unicode.isspace() or \
                  event.unicode in (".", "-", "_")) and len(prompt.text) < \
                  prompt.character_limit:
                prompt.text += event.unicode
                prompt.update()
                prompt.draw_text()

    def show_success_indicator(self):
        self.draw()
        if self.success_indicator_blink_count > 1:
            self.success_indicator_blink_count = 0
            self.halt(self.show_success_indicator)
        else:
            if self.success_indicator_active:
                self.display_surface.blit(self.success_indicator,
                                          self.success_indicator_rect)
            if self.success_indicator_active:
                self.success_indicator_blink_count += 1
            self.success_indicator_active = not self.success_indicator_active

    def save_temporary_file(self):
        fp = self.temporary_file
        fp.seek(0)
        fp.truncate()
        self.get_configuration().write(fp)

    def rearrange(self):
        self.set_background()
        self.set_success_indicator()
        self.set_plot_rect()
        self.set_markers()
        self.set_nodeset_label()
        self.set_axis_labels()
        self.set_buttons()
        self.prompt.reset()

class Marker(Sprite):

    def __init__(self, parent, node):
        Sprite.__init__(self, parent)
        self.add_frame(parent.marker_frame)
        self.node = node


class Button(Sprite):

    def __init__(self, parent, text, left):
        Sprite.__init__(self, parent)
        self.set_frame(text)
        self.location.bottomleft = left, \
                                   self.get_display_surface().get_rect().bottom

    def set_frame(self, text):
        self.clear_frames()
        self.add_frame(self.parent.font.render(text, True, (0, 0, 0),
                                               (255, 255, 255)))


class Prompt(Sprite):

    def __init__(self, parent):
        Sprite.__init__(self, parent)
        self.load_configuration()
        self.font = Font(None, self.text_size)
        self.reset()
        self.deactivate()

    def deactivate(self):
        self.active = False

    def load_configuration(self):
        config = self.get_configuration("interpolator-gui")
        self.size = config["prompt-size"]
        self.border_color = config["prompt-border-color"]
        self.border_width = config["prompt-border-width"]
        self.character_limit = config["prompt-character-limit"]
        self.text_size = config["prompt-text-size"]

    def reset(self):
        self.set_frame()
        self.place()

    def set_frame(self):
        self.clear_frames()
        surface = Surface(self.size)
        self.add_frame(surface)
        surface.fill(self.border_color)
        width = self.border_width * 2
        surface.fill((0, 0, 0), surface.get_rect().inflate(-width, -width))

    def place(self):
        self.location.center = self.display_surface.get_rect().center

    def activate(self, text, callback, *args):
        self.active = True
        self.text = str(text)
        self.callback = callback, args
        self.update()
        self.draw_text()

    def draw_text(self):
        surface = self.font.render(self.text, True, (255, 255, 255), (0, 0, 0))
        rect = surface.get_rect()
        rect.center = self.location.center
        self.display_surface.blit(surface, rect)
3.144.9.141
3.144.9.141
3.144.9.141
 
January 23, 2021

I wanted to document this chat-controlled robot I made for Babycastles' LOLCAM📸 that accepts a predefined set of commands like a character in an RPG party 〰 commands like walk, spin, bash, drill. It can also understand donut, worm, ring, wheels, and more. The signal for each command is transmitted as a 24-bit value over infrared using two Arduinos, one with an infrared LED, and the other with an infrared receiver. I built the transmitter circuit, and the receiver was built into the board that came with the mBot robot kit. The infrared library IRLib2 was used to transmit and receive the data as a 24-bit value.


fig. 1.1: the LEDs don't have much to do with this post!

I wanted to control the robot the way the infrared remote that came with the mBot controlled it, but the difference would be that since we would be getting input from the computer, it would be like having a remote with an unlimited amount of buttons. The way the remote works is each button press sends a 24-bit value to the robot over infrared. Inspired by Game Boy Advance registers and tracker commands, I started thinking that if we packed multiple parameters into the 24 bits, it would allow a custom move to be sent each time, so I wrote transmitter and receiver code to process commands that looked like this:

bit
name
description
00
time
multiply by 64 to get duration of command in ms
01
02
03
04
left
multiply by 16 to get left motor power
05
06
07
08
right
multiply by 16 to get right motor power
09
10
11
12
left sign
0 = left wheel backward, 1 = left wheel forward
13
right sign
0 = right wheel forward, 1 = right wheel backward
14
robot id
0 = send to player one, 1 = send to player two
15
flip
negate motor signs when repeating command
16
repeats
number of times to repeat command
17
18
19
delay
multiply by 128 to get time between repeats in ms
20
21
22
23
swap
swap the motor power values on repeat
fig 1.2: tightly stuffed bits

The first command I was able to send with this method that seemed interesting was one that made the mBot do a wheelie.

$ ./send_command.py 15 12 15 1 0 0 0 7 0 1
sending 0xff871fcf...


fig 1.3: sick wheels

A side effect of sending the signal this way is any button on any infrared remote will cause the robot to do something. The star command was actually reverse engineered from looking at the code a random remote button sent. For the robot's debut, it ended up with 15 preset commands (that number is in stonks 📈). I posted a highlights video on social media of how the chat controls turned out.

This idea was inspired by a remote frog tank LED project I made for Ribbit's Frog World which had a similar concept: press a button, and in a remote location where 🐸 and 🐠 live, an LED would turn on.


fig 2.1: saying hi to froggo remotely using an LED

😇 The transmitter and receiver Arduino programs are available to be copied and modified 😇