from pygame import Color, Surface, draw, PixelArray

from xenographic_wall.pgfw.GameChild import GameChild

class Ring(GameChild, Surface):

    transparent_color = Color("magenta")

    def __init__(self, parent, index):
        GameChild.__init__(self, parent)
        self.index = index

    def init_surface(self):
        config = self.get_configuration("scope")
        ring_count = config["ring-count"]
        width = config["diameter"] / ring_count * (ring_count - self.index)
        Surface.__init__(self, (width, width))
        color = self.transparent_color
        rect = self.get_rect() =
        self.rect = rect

    def draw_circle(self):
        radius = self.get_width() / 2, self.get_neutral_color(), (radius, radius), radius)

    def get_neutral_color(self):
        return Color(self.get_configuration("scope", "neutral-color"))

    def set_color(self, color):
        pixels = PixelArray(self)
        center = self.get_rect().center
        current = pixels[center[0]][center[1]]
        pixels.replace(current, color)
        del pixels

    def get_alpha(self):
        return self.alpha

    def set_alpha(self, alpha):
        self.alpha = alpha
        Surface.set_alpha(self, int(alpha))

    def update(self):

    def draw(self):
        self.parent.parent.parent.blit(self, self.rect)
from xenographic_wall.pgfw.GameChild import GameChild
from xenographic_wall.creatures.Creature import Creature

class Creatures(GameChild, list):

    def __init__(self, parent):
        GameChild.__init__(self, parent)

    def reset(self):
        list.__init__(self, [])
        for creature in self:

    def populate(self):
        self.append(Creature(self, 3, 1))
        self.append(Creature(self, 3, 2))
        self.append(Creature(self, 3, 3))
        self.append(Creature(self, 3, 4))
        self.append(Creature(self, 3, 5))
        self.append(Creature(self, 3, 6))

    def update(self):
        for creature in self:
from re import search
from os import listdir
from os.path import join, basename
from glob import glob
from time import time
from random import randrange
from math import atan, sin, cos, sqrt, copysign

from pygame import Surface, image, Color

from xenographic_wall.pgfw.GameChild import GameChild

class Creature(GameChild, Surface):

    transparent_color = Color("magenta")
    def __init__(self, parent, genus_id, species_id):
        GameChild.__init__(self, parent)
        self.genus_id = genus_id
        self.species_id = species_id
        self.current_frame_index = 0
        self.last_advance = 0

    def load_frames(self):
        frames = []
        root = self.build_species_dir()
        for path in sorted(glob(join(root, "*.png"))):
            frames.append(Frame(self, path))
        self.frames = frames
        self.rect = frames[0].get_rect()

    def build_species_dir(self):
        root = self.get_resource("creature", "root")
        genus_dir = glob(join(root, "{0}*".format(self.genus_id)))[0]
        return glob(join(genus_dir, "{0}*".format(self.species_id)))[0]

    def read_stats(self):
        path = join(self.build_species_dir(),
                    self.get_configuration("creature", "stat-file"))
        duration, food, speed = file(path).read().split()
        self.eat_duration = int(duration) = int(food)
        self.speed = float(speed)

    def init_surface(self):
        Surface.__init__(self, self.frames[0].get_size())

    def reset(self):

    def finish_eating(self):
        self.eat_start_time = None

    def update_nearest_mushroom(self):
        mushrooms = self.get_mushrooms()
        food =
        available = mushrooms[food]
        nearest = None
        for mushroom in available:
            if not mushroom.eaten:
                distance = self.get_distance_to_mushroom(mushroom)
                if not nearest or distance < nearest_distance:
                    nearest = mushroom
                    nearest_distance = distance
        if not nearest:
            nearest = mushrooms.add_mushroom(food)
        self.nearest_mushroom = nearest

    def get_mushrooms(self):
        return self.parent.parent.mushrooms

    def get_distance_to_mushroom(self, mushroom):
        start =
        end =
        return sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)

    def set_path(self):
        speed = self.speed
        start =
        end =
        x_distance = end[0] - start[0]
        y_distance = end[1] - start[1]
        if not x_distance and not y_distance:
            dx, dy = 0, 0
        elif not x_distance:
            dx, dy = 0, speed
        elif not y_distance:
            dx, dy = speed, 0
            angle = atan(float(x_distance) / y_distance)
            dx = sin(angle) * speed
            dy = cos(angle) * speed
        self.dx = abs(dx) * copysign(1, x_distance)
        self.dy = abs(dy) * copysign(1, y_distance)
        self.x_travelled = 0
        self.y_travelled = 0
        self.path_start = start

    def place(self):
        area = self.parent.parent.get_rect()
        self.rect.topleft = randrange(area.w), randrange(area.h)

    def update(self):

    def clear(self):

    def advance_frame(self):
        current_time = time()
        duration = (current_time - self.last_advance) * 100
        if duration > self.get_current_frame().duration:
            index = self.current_frame_index + 1
            if index >= len(self.frames):
                index = 0
            self.last_advance = current_time
            self.current_frame_index = index

    def get_current_frame(self):
        return self.frames[self.current_frame_index]

    def confirm_nearest_mushroom(self):
        if not self.is_eating() and self.nearest_mushroom.eaten:

    def eat_mushroom(self):
        location = self.nearest_mushroom.rect
        if not self.is_eating() and self.rect.colliderect(location):
            self.eat_start_time = time()

    def is_eating(self):
        return self.eat_start_time is not None

    def continue_eating(self):
        if self.is_eating():
            duration = (time() - self.eat_start_time) * 1000
            nearest = self.nearest_mushroom
            limit = self.eat_duration
            if duration > limit:
            elif duration >= limit / 2 and not nearest.bitten:

    def move(self):
        if not self.is_eating():
            rect = self.rect
            destination = self.nearest_mushroom
            remaining = self.get_distance_to_mushroom(destination)
            if remaining < self.speed:
                self.x_travelled += self.dx
                self.y_travelled += self.dy
                start = self.path_start
                rect.centerx = start[0] + self.x_travelled
                rect.centery = start[1] + self.y_travelled

    def contain(self):
        rect = self.rect
        area = self.parent.parent.get_rect()
        if rect.bottom > area.bottom:
            rect.bottom = area.bottom
        elif <
        if rect.right > area.right:
            rect.right = area.right
        elif rect.left < area.left:
            rect.left = area.left

    def draw(self):
        self.blit(self.get_current_frame().image, (0, 0))
        self.parent.parent.blit(self, self.rect)

class Frame(GameChild):

    def __init__(self, parent, path):
        GameChild.__init__(self, parent)
        self.path = path

    def set_image(self):
        self.image = image.load(self.path).convert_alpha()

    def set_duration(self):
        separator = self.get_configuration("creature", "field-separator")
        self.duration = int(search(separator + "(.*)\.",

    def get_rect(self):
        return self.image.get_rect()

    def get_size(self):
        return self.image.get_size()
August 12, 2013

I've been researching tartan/plaid recently for decoration in my updated version of Ball & Cup, now called Send. I want to create the atmosphere of a sports event, so I plan on drawing tartan patterns at the vertical edges of the screen as backgrounds for areas where spectator ants generate based on player performance. I figured I would make my own patterns, but after browsing tartans available in the official register, I decided to use existing ones instead.

I made a list of the tartans that had what I thought were interesting titles and chose 30 to base the game's levels on. I sequenced them, using their titles to form a loose narrative related to the concept of sending. Here are three tartans in the sequence (levels 6, 7 and 8) generated by an algorithm I inferred by looking at examples that reads a tartan specification and draws its pattern using a simple dithering technique to blend the color stripes.



Spice Apple

It would be wasting an opportunity if I didn't animate the tartans, so I'm thinking about animations for them. One effect I want to try is making them look like water washing over the area where the ants are spectating. I've also recorded some music for the game. Here are the loops for the game over and high scores screens.

Game Over

High Scores