from random import random

from pygame.mixer import Sound

from _send.pgfw.GameChild import GameChild

class Track(GameChild):

    def __init__(self, parent, path, volume):
        GameChild.__init__(self, parent)
        self.path = path
        self.volume = volume
        self.channel = None
        self.frequency = self.get_configuration("title", "pan-frequency")
        self.set_sound()

    def set_sound(self):
        sound = Sound(self.path)
        sound.set_volume(self.volume)
        self.sound = sound

    def play(self):
        self.channel = self.sound.play(-1)

    def update(self):
        if self.channel and random() < self.frequency:
            self.parent.set_random_panning(self.channel)
from re import match

from _send.pgfw.GameChild import GameChild
from _send.tartan.Tartan import Tartan

class Tartans(GameChild, dict):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.load()

    def load(self):
        patterns = file(self.get_resource("tartan", "path"))
        while True:
            line = patterns.readline()
            if not line:
                break
            name = line.strip()
            self[name] = Tartan(self, name, patterns)
from re import match, sub
from itertools import izip, chain

from pygame import Surface, Color, PixelArray
from pygame.image import save

from _send.pgfw.GameChild import GameChild

class Tartan(GameChild, Surface):

    def __init__(self, parent, name=None, patterns=None):
        GameChild.__init__(self, parent)
        self.fields = self.get_game().fields
        self.name = name
        self.load_configuration()
        if patterns is not None:
            self.load(patterns)
        self.init_surface(0)
        # self.generate(store=True)

    def load_configuration(self):
        config = self.get_configuration("tartan")
        self.thread_size = config["thread-size"]
        self.sample_size = config["sample-size"]

    def load(self, patterns):
        self.sett = self.parse_sett(patterns.readline())
        self.asymmetric = bool(int(patterns.readline().strip()))
        self.palette = self.parse_palette(patterns)

    def parse_sett(self, line):
        sett = []
        size = 0
        for stripe in line.strip().split(" "):
            identifier, width = match("([A-Z]+)([0-9]+)", stripe).groups(0)
            width = int(width)
            size += width
            sett.append(Stripe(identifier, width))
        self.sett_width = size
        return sett

    def parse_palette(self, patterns):
        palette = {}
        while True:
            line = patterns.readline().strip()
            if not line:
                break
            for color in line.split(";"):
                color = color.strip()
                if color:
                    assignment = map(str.strip, color.split("="))
                    palette[assignment[0]] = Color("#%sFF" % assignment[1][:6])
        return palette

    def generate(self, scale=None, store=False):
        if not scale:
            scale = self.get_default_scale()
        surface = self.select_surface(scale, store)
        self.paint(scale, surface)
        if not store:
            return surface

    def get_default_scale(self):
        return self.fields.get(self.name).tartan_scale

    def select_surface(self, scale, store):
        size = self.get_size(scale)
        if store:
            self.init_surface(size)
            surface = self
        else:
            surface = Surface((size, size))
        return surface

    def get_size(self, scale):
        sett = self.sett
        sett_width = self.sett_width
        if not self.asymmetric:
            size = scale * (sett_width * 2 - sett[-1].width - sett[0].width)
        else:
            size = scale * sett_width
        return size

    def init_surface(self, size):
        Surface.__init__(self, (size, size))

    def paint(self, scale, surface):
        offset, overflow = 0, 0
        sett = self.sett
        pixels = PixelArray(surface)
        for stripe in self.get_stripes_generator(scale):
            width = stripe.width
            color = self.palette[stripe.identifier]
            if overflow:
                width -= 1 - overflow
                blend = self.blend_colors(previous_color, color, overflow)
                self.draw_line(pixels, offset, 1, blend)
                offset += 1
            if width >= 1:
                truncated = int(width)
                self.draw_line(pixels, offset, truncated, color)
                offset += truncated
                overflow = width - truncated
            else:
                overflow = max(width, 0)
            previous_color = color
        del pixels

    def get_stripes_generator(self, scale):
        sett = self.sett
        if not self.asymmetric:
            return (stripe.get_scaled(scale) for stripe in
                    chain(sett[:-1], reversed(sett[1:])))
        return (stripe.get_scaled(scale) for stripe in sett)

    def draw_line(self, pixels, offset, width, color):
        thread_size = self.thread_size
        operator = thread_size * 2
        for y in xrange(offset, min(offset + width, len(pixels[0]))):
            for x in xrange(0, len(pixels[0])):
                if (x + y) % operator < thread_size:
                    pixels[x][y] = color
        for x in xrange(offset, min(offset + width, len(pixels[0]))):
            for y in xrange(0, len(pixels[0])):
                if (x + y) % operator >= thread_size:
                    pixels[x][y] = color

    def blend_colors(self, alpha, beta, ratio):
        alpha = (component * ratio for component in alpha)
        beta = (component * (1 - ratio) for component in beta)
        blend = [int(sum(components)) for components in izip(alpha, beta)]
        return Color(*blend)

    def write_sample(self):
        step = self.get_width()
        shift = step / 2
        count = self.sample_size
        size = step * count
        offsets = range(-shift, size + step, step)
        sample = Surface((size, size))
        for x in offsets:
            for y in offsets:
                sample.blit(self, (x, y))
        path = "resource/local/img/tartan/generated/%02i-%s.png" % \
               (self.fields.get_index(self.name) + 1,
                self.get_filesystem_formatted_name())
        save(sample, path)

    def get_filesystem_formatted_name(self):
        return sub("[^\w-]", "_", self.name.replace(" ", "-"))


class Stripe:

    def __init__(self, identifier, width):
        self.identifier = identifier
        self.width = width

    def __repr__(self):
        return "<%s at %s (%s %.3f)>" % \
               (self.__class__.__name__, hex(id(self)), self.identifier,
                self.width)

    def get_scaled(self, scale):
        return Stripe(self.identifier, self.width * scale)
216.73.216.144
216.73.216.144
216.73.216.144
 
December 3, 2013

Where in the mind's prism does light shine, inward, outward, or backward, and where in a plane does it intersect, experientially and literally, while possessing itself in a dripping wet phantasm?


Fig 1.1 What happens after you turn on a video game and before it appears?

The taxonomy of fun contains the difference between gasps of desperation and exaltation, simultaneously identical and opposite; one inspires you to have sex, while the other to ejaculate perpetually. A destruction and its procession are effervescent, while free play is an inseminated shimmer hatching inside you. Unlikely to be resolved, however, in such a way, are the climaxes of transitions between isolated, consecutive game states.

You walk through a door or long-jump face first (your face, not Mario's) into a painting. A moment passes for eternity, viscerally fading from your ego, corpus, chakra, gaia, the basis of your soul. It happens when you kill too, and especially when you precisely maim or obliterate something. It's a reason to live, a replicating stasis.


Fig 1.2 Sequence in a video game

Video games are death reanimated. You recurse through the underworld toward an illusion. Everything in a decision and logic attaches permanently to your fingerprint. At the core, you use its energy to soar, comatose, back into the biosphere, possibly because the formal structure of a mind by human standards is useful in the next world.